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An experimental and analytical study into the vortex dynamics of a stratified shear
layer subjected to a spatial acceleration is presented. The outer flow is dictated by
a hydraulically controlled wedge flow which provides a spatially accelerating shear
layer and baroclinic generation of vorticity along the inclined interface. A new, finite-
amplitude mechanism is observed in which the core of the growing vortex is separated
from the vorticity source at the interface. A secondary core develops and an altered
vortex pairing interaction is observed. A spatial linear stability analysis reveals that
one of two modified Kelvin–Helmholtz modes is dominant, resulting in the centre of
the instability being offset from the density interface into the slower moving stream.
Digital particle imaging velocimetry (DPIV) measurements are presented along with
flow visualization which indicate that the mechanism is a result of the offset in the
vortex core from the source of vorticity at the interface combined with the effects of
spatial acceleration and buoyancy. The mixing induced by the interfacial instabilities
is such that a sharp density interface remains near the high-momentum stream, with
a low-gradient region extending into the low-momentum stream.

1. Introduction
Specific problems involving shear-induced mixing in geophysical applications often

occur in complex scenarios in which both stratification and geometric boundary
conditions may have significant effects on mixing layer dynamics. One effect of
geometrical boundary conditions on a stratified mixing layer is an acceleration due
to internal hydraulic response to topographical changes.

A number of geophysical flows can be described in terms of internal hydraulics.
The review by Smith (1979) examines atmospheric hydraulic response to mountain
topography. Klemp & Lilly (1975) used hydraulic modelling to describe large-scale
atmospheric flows responsible for severe downslope wind events. Flow in ocean straits,
such as the Strait of Gibraltar, has also been considered within the context of internal
hydraulics (Armi & Farmer 1988). An important scenario in which hydraulic flow
and interfacial mixing processes are inextricably linked is that of estuarine flow.
Farmer & Freeland (1983) present a general study of fjord systems and identify
mixing mechanisms as central to circulation in estuaries, since these mechanisms are
responsible for establishing the density gradients that drive the gravitational flow.

Geyer & Smith (1987) studied an estuarine system in Fraser Estuary in British
Columbia in which a number of localized mixing zones could be identified, coincident
with lateral constrictions in the channel. In addition to the baroclinic circulation,
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Figure 1. Echosounder image of plunging flow at Knight Inlet, British Columbia. Tidal flow is
from left to right. Channel depth at the right of the image is approximately 60 m. The horizontal
scale is approximately 0.5 km (personal communication, D. Farmer).

estuaries are subject to strong tidal forcing. The baroclinic exchange may be arrested
in the presence of strong tidal flow, resulting in tidal intrusions or salt wedge flows.
These flows have been observed and studied extensively in Knight Inlet in British
Columbia by Farmer & Smith (1980) and Farmer & Armi (1998). Figure 1 is an
echosounder image (D. Farmer, personal communication) of flow over a sill in
Knight Inlet showing a plunging interface, which can be identified with a strong
density step from concurrent density measurements. The image was obtained with
a 100 to 200 KHz echosounder from a ship traversing the flow region. Reflections
from waterborne scatterers (presumably biological) serve as markers which reveal
flow structure when the reflected signal is plotted versus depth. Tidal flow is seaward,
from left to right, with the fluid below the plunge line being composed of dense
salt water trapped by earlier tidal cycles. A thin layer of fresh water from glacial
runoff caps the flow. The dense fluid flows over the sill, plunges near the crest and
accelerates as it descends. Since the time for the ship to traverse the region is finite,
there is some spatial aliasing of the image. Nonetheless, qualitative observations of
flow structure are possible. Large-scale shear instabilities are visible along the plunge
line. The region above the shear interface is essentially homogeneous, composed of
mixed fluid locally generated along the plunge line (Farmer & Armi 1998). The details
of the general flow are thus determined by the interfacial mixing.

1.1. Two-layer hydraulic theory

Flow in these inlets is quite often characterized by high stratification and can be
modelled using hydraulic theory for two homogeneous layers. The hydraulic theory for
the flow of two fluids of differing densities through variations in geometry is detailed
in Armi (1986). The special case of two counter-flowing layers in a contraction is
considered by Armi & Farmer (1986). These exchange flows are characterized by the
existence of two control locations, at which the flow is critical to long internal waves.
A sketch of the exchange flow is shown in figure 2(a). One control coincides with
the narrowest section of the channel (b0) and the second location, a ‘virtual control’,
occurs at the point at which layer velocities are equal (bv). Flows are parameterized in
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Figure 2. Regimes of two-layer hydraulic flow. Triangles indicate direction and relative scale of
flow. (a) Weak to moderate barotropic exchange flow; b0 indicates the narrowest section and bv
is the location of the virtual control. (b) Arrested wedge flow occurring for moderate to strong
barotropic component; bf indicates the position of the tip of the wedge.

terms of the net barotropic flow rate, with distinct flow regimes occurring for ‘weak’,
‘moderate’ and ‘strong’ barotropic flow. For the case of zero net flow rate, both layers
have equal and opposite flow rates and both control conditions are satisfied at the
narrowest point of the channel. Flow is supercritical on either side of this point,
matching the subcritical conditions in the reservoirs through hydraulic jumps. The
introduction of a weak net flow results in shifting of the virtual control towards
the upstream reservoir, with subcritical conditions existing between the controls and
supercritical flow occurring elsewhere.

Wedge flows are a special case of two-layer exchange flows, occurring in the limit
of moderate and high barotropic flow. These flows, illustrated in figure 2(b), result for
barotropic flow rates exceeding a critical value, at which the virtual control condition
is satisfied in the upstream reservoir. At this critical point, one layer is arrested and the
flow is effectively a single layer flow. For moderate barotropic flow rates, the wedge
tip (bf) is located upstream of the channel narrows and the flow is subcritical to long
waves, accelerating through a single control at the narrowest section to supercritical
conditions downstream. For high flow rates, the wedge tip occurs downstream of the
narrowest section at which point the control condition is met. The moderate and high
barotropic flow regimes are considered in detail by Pawlak & Armi (1997), including
the effects of friction and cross-stream non-uniformity.

1.2. Mixing layer and stability studies

As evidenced in figure 1, the interface between the two layers is subject to shear
instabilities which can generate significant mixing. These instabilities are spatially
evolving and are subject to spatially varying velocity fields.

Experimental studies of mixing layers have typically been undertaken in spatially
evolving splitter-plate configurations (Brown & Roshko 1974; Winant & Browand
1974) or in temporally evolving tilting tube facilities as described by Thorpe (1968).
These investigations have documented the existence of organized two-dimensional
vortical structures in the mixing layer and identified the interaction of these structures
as a key component in the growth of the mixing layer. Subsequent studies have given
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valuable insight into mixing layer mechanics such as the source of streamwise vorticity
(Thorpe 1985; Lasheras, Cho & Maxworthy 1986; Bernal & Roshko 1986) and its
role in the mixing transition. Experimental studies by Koop & Browand (1979) and
Thorpe (1971, 1973) have also aided in understanding the effects of stratification on
the mixing layer.

The development of the unstratified, non-accelerating shear layer involves essen-
tially a redistribution of a finite amount of vorticity by large-scale two-dimensional
structures (Corcos & Sherman 1984). Stratification can provide both a source and a
sink for vorticity. For the non-accelerating, stratified case (Koop & Browand 1979),
baroclinicity affects the redistribution of the initial vorticity and ultimately limits the
rate of growth of the mixing layer.

The stratified layer subjected to a temporal acceleration was examined by Thorpe
(1968, 1971) in his well-known tilting tube experiments. Unstratified spatially acceler-
ating shear layers have been considered within the context of confined reacting shear
layers, in which a pressure gradient is generated by the heat release from the reaction.
Hermanson & Dimotakis (1989) examined the thinning of a reacting shear layer in
the presence of a favourable pressure gradient and parameterized the rate of growth
of the mixing layer as an integral of the varying velocity ratio.

The stability of two-layer exchange flows to long internal waves was examined by
Lawrence (1990). He found that these flows become unstable to infinitely long waves
downstream of the narrowest section in the presence of a net barotropic flow. Pawlak &
Armi (1996) considered the stability of exchange flows using temporal linear stability
theory and found various possible modes of instabilities for different flow regimes.

Analysis of the linear stability of inviscid flows to infinitesimal perturbations has
been used in obtaining a qualitative description of shear instabilities in a number of
studies. The majority of analyses of shear instabilities have been conducted from a tem-
poral frame of reference. The classical analyses by Taylor (1931) and Goldstein (1931)
yielded the equation governing the evolution of infinitesimal disturbances and exam-
ined the temporal solution space for basic profiles. Holmboe (1962) investigated the
case in which the shear thickness is much larger than the density interface. An addi-
tional region of instability occurs at higher Richardson numbers for this case which he
termed overstability and which has since become identified as the Holmboe instability.

Hazel (1972) considered the effects of equidistant boundaries on profiles with equal
density and velocity scale and further detailed the effects of a variation in relative
scales of the density and velocity interfaces. Lawrence, Browand & Redekopp (1987)
followed by Lawrence, Lasheras & Browand (1991) found that an offset in the centres
of the velocity and density interfaces resulted in the dominance of one of the two
Holmboe modes. These temporal studies can be qualitatively extended to spatially
developing flows and can be extrapolated in cases where the convective velocity is
large in comparison to the mean shear. In the arrested wedge, however, this condition
is not satisfied and the problem must be considered from a spatial frame of reference.

The spatial linear stability of the unstratified shear layer was addressed by
Michalke (1965). Among other discrepancies, he found that the disturbance phase
velocity was not constant with frequency as predicted by temporal theory. His spatial
theory predictions agreed well with experimental observations in spatially developing
shear layers.

1.3. Purpose

Several recent studies have used hydraulically controlled flows as a framework for the
study of interfacial shear phenomena (Pawlak & Armi 1996; Yonemitsu et al. 1996)
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without addressing the effects of acceleration. We shall examine the vortex mechanisms
which are inherent in some of these hydraulic flows in which acceleration is significant
on the scale of instability development.

The aim of the present study is to examine the combined effects of buoyancy and
acceleration on the dynamics of a mixing layer. In § 1.4 we propose a parameter
obtained from a time scale analysis of the relevant mechanisms. Section 2 presents
a detailed description of the experimental facility and technique including laser-
induced fluorescence (LIF) flow visualization and digital particle imaging velocimetry
(DPIV). In § 3 we present experimental observations of the mixing layer mechanics
for three experimental geometries. We will use spatial linear theory in § 4 to examine
the possible modes of instability in the parallel flow case and to understand the
effect of these modes on the accelerating mixing layer development. Experimental
observations will be used along with the predictions from the stability analysis to
generate a phenomenological description or cartoon of the development of these
modes at finite amplitude in § 5. Consequences of the observed vortex mechanics on
the mixing process will be quantified and discussed.

1.4. Time scales

We now seek a parameter that will serve as a measure of the local effect of the spatial
acceleration on the developing mixed layer for various experimental geometries to be
detailed in § 2. We will discuss the validity of this parameter choice further in § 5.

We can obtain a time scale for the vortex development using the vertical length
scale of the mixed layer, δ, in combination with the overall shear, ∆U, or for a single
flowing layer, U:

te =
δ

U
. (1.1)

This is, alternatively, the turnover time scale of the largest eddies. An acceleration
time scale can be defined as

ta =

(
c

U

dU

dx

)−1

(1.2)

in which U is the free-stream velocity and c is the propagation velocity of the
instability. This time scale is, in turn, equivalent to the time over which a parcel of
fluid travelling at a velocity, c, will accelerate by U. If we assume, now, that the phase
speed of the instability scales with the local velocity such that c ∼ U then the ratio
of the time scales, which we will call the acceleration parameter, TA, is then

TA =
tg

ta
=
δ

U

dU

dx
. (1.3)

This acceleration parameter is related to the inclination of the interface for hy-
draulically controlled flows, due to the baroclinic generation of vorticity. For channels
involving only a variation in depth, dU/dx is solely a result of baroclinic produc-
tion. In cases where channel width varies, acceleration results from both baroclinic
generation and cross-stream stretching of vorticity. This is discussed further in the
Appendix.

The choice of velocity scale over which to define ta is at our discretion, hence
there is no requirement that tg ∼ ta and, equivalently, that TA ∼ O(1). We will wish
to examine then the variation of this parameter more than its absolute magnitude
and we will quantify the effects of its variation on the mixing for three experimental
geometries.
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Figure 3. Experimental facility and data acquisition system.
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2. Experimental facility and techniques
The experimental facility, composed of a Plexiglas convergent-divergent channel

connecting two 800 l tanks, is shown in figure 3. The major portion of the channel
consisted of a 180 cm long contraction, 30 cm high, 7.5 cm wide at the centre and
30 cm wide at the ends.

Density variations were obtained using salt, with temperatures monitored in each
tank using digital thermistor thermometers to ensure thermal variations were minimal.
Experiments were initiated with one reservoir filled with a layer of salt water beneath
a layer of about 300 l of fresh water and the second reservoir completely filled
with salt water. A sliding gate at one end of the channel initially separates the two
reservoirs. To begin the experiment, the gate is lifted and a known net barotropic flow
is then generated in the channel by pumping salt water from the layered reservoir
to the other with calibrated pumps. Open cell foam diffusers were placed in each
tank as well as in the upstream section of the channel in order to eliminate velocity
fluctuations generated by the pumping. Further details of the experimental facility
and its operation are given in Pawlak & Armi (1997).

Available run time for the facility is a function of the density difference and the
desired barotropic flow rate. After an initial transient of 5 to 10 minutes, during
which the arrested wedge evolves from the initial gravity current, about 20 to 25
minutes of run time was possible for most experiments before mixed fluid collecting
in the downstream reservoir would intrude upstream into the test section or would be
pumped into the upstream tank. Density differences and barotropic flow rates were
chosen to maximize run times while maintaining shear layer Reynolds numbers at
levels of interest. Typical Reynolds numbers near the location of onset of instabilities
were about 100 based on the momentum thickness. Richardson numbers (g′δ/∆U2)
based on the momentum thickness were about 0.01. The experiments discussed
herein fall within the range of moderate barotropic flow as addressed in Pawlak &
Armi (1997).

The rate of acceleration of the flowing layer is a function of the rate of expansion
of cross-sectional area of the channel (Armi & Farmer 1986; Pawlak & Armi 1997).
Variations in the acceleration parameter, TA, can then be generated by examining
different channel geometries. Three separate channel geometries were used to obtain
different expansion rates, as shown in figure 4. The first configuration (figure 4a), which
corresponds to the intermediate acceleration case, is the unaltered channel geometry
using a symmetrical variation in width and a constant depth. A high acceleration
case (figure 4b) was achieved by an increase in expansion through the introduction of
a Plexiglas and foam sill along the channel bottom. The third geometry (figure 4c),
a low acceleration case, reduced the expansion by adding a flat Plexiglas plate along
one channel wall.

2.1. Concentration measurements

The density field was obtained by measurement of the fluorescence of Rhodamine
6G dye. The channel was illuminated from below with a vertical laser sheet aligned
in the streamwise direction. The laser sheet was generated from an 8 W argon
laser reflected off a rotating polygonal mirror beneath the channel (see figure 3).
A CCD camera, positioned on a streamwise traverse about 1 m from the laser
sheet, provided a view of roughly an 8 cm by 10 cm area of the channel at any
streamwise location, with a 240 by 640 pixel resolution in each video field. Both
horizontal and vertical camera orientations were used. A high-pass colour filter was
used to eliminate reflections from particles seeded in the flow for particle imaging.
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Figure 4. Plan and side views of channel geometries along with variation in cross-sectional area
versus x. (a) Unaltered geometry (b) Increased expansion. (c) Reduced expansion.

Light reflected from the particles at the laser wavelengths was virtually eliminated
by the filter, while the light generated by the rhodamine fluorescence suffered little
attenuation.

The concentration of rhodamine was chosen to remain within the linear range of the
luminescence–concentration relation. This was found to be satisfied at concentrations
below 5.0 × 10−7 g cm−3 both by our own experiments and by a study by Lemoine,
Wolff & Lebouche (1996). Rhodamine dye was mixed with the salt prior to the
experiment, filling the tanks and channel with a homogeneous mixture. With the
channel full of a uniform concentration of dye, images of the light sheet were
digitized in order to obtain the spatial variation in the light field for normalization.
Since the camera and the rotating mirror were both mounted on the traverse, this field
remained the same at any streamwise position. Images at several vertical positions
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(a) (b)

(c)

Figure 5. (a) Single image captured using the colour filter for concentration measurement. (b)
Image corrected for spatial variation in laser sheet. (c) Plots of intensity along vertical cut in image
(a) (solid line) and (b) (dashed line). Location of vertical cut is indicated in (a) and (b) by a dashed
line.

were digitized and later pieced together digitally to obtain the full light field in the
channel. Eight-bit greyscale images of the flow were then captured directly onto a
PC at either 3 or 5 Hz allowing sequences of nearly a minute in length at a time.
Figure 5(a) shows an individual greyscale image from one sequence. A reference grid
is placed on the channel and a single frame is digitized prior to capturing the sequence.
With the vertical position of the image identified, the corresponding normalization
field can be obtained from the full light field. Figure 5(b) shows the normalized
image which has eliminated the spatial variation in the laser sheet. Plots representing
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intensity along a vertical cut from each image (identified by the dashed line in 5a and
5b) are shown in figure 5(c).

2.2. Particle imaging velocimetry

The low flow velocities (< 7 cm s−1) made it possible to implement a simple digital
particle imaging velocimetry system. A description of the method along with a detailed
error analysis of the general technique is given by Fincham & Spedding (1997). A
second CCD camera was positioned on the streamwise traverse to view a roughly
10 cm by 8 cm area just upstream of that viewed by the camera used for concentration
measurement. At the velocities and resolutions of interest, the video synchronization
rate of 30 Hz was adequate for imaging; pulsing of the laser sheet was not necessary.
The video feed was captured directly onto a PC, allowing 7 s sequences of 640 by 480
pixel, 8-bit greyscale images at 30 Hz. Longer sequences at lower sampling rates were
used for average measurements. The camera output was also recorded continuously
onto Super VHS videotape for flow visualization and further DPIV analysis.

The captured 640 by 480 pixel images are separated digitally into 640 by 240
pixel even and odd fields, from which successive even frames are used for DPIV
processing. The CCD camera used for the PIV analysis was set to integrate across
two succesive rows of pixels in each field. In this manner maximum information is
retained in the deinterlacing; however, the vertical resolution is half of the horizontal
resolution. The DPIV algorithm utilizes cross-correlations between rectangular sec-
tions, or interrogation regions, from each image in a pair to obtain measurements of
the local displacement. First, a rough estimate of the displacement is obtained using
a course grid, with typical interrogation regions of 64 by 32 pixels at intervals of
48 by 24 pixels. A second correlation is then done using a finer grid, with regions
of 12 by 24 pixels at intervals of 10 by 20 pixels. A region from the first image is
correlated with a section of the second image, displaced by an interpolated value of
the initial rough grid estimate. Sub-pixel estimates of the fine grid correlation peak
are obtained with a two-dimensional Gaussian fit of a 3 by 3 pixel matrix around the
initial approximation for the maximum.

Some image processing of the raw captured images was necessary prior to the
DPIV processing in order to eliminate velocity biasing due to non-uniformities of the
laser field in the fluorescent layer. Vertical shadows were produced occasionally by
large particles along the channel bottom or from imperfections in the Plexiglas. These
produce patterns in the image which tend to bias the correlation to a zero horizontal
velocity. The images were first filtered using a course median filter to eliminate the
high-frequency signal from the particles. The filtered image is then subtracted from
the original to retrieve the particle field. Inevitably, some sub-pixel error is introduced
through the median filtering; however, the method allows us to successfully eliminate
the biasing due to the shadows. Velocity fields obtained from the DPIV analysis were
used to obtain shear layer data in the upstream region, free-stream average velocities,
vorticity fields and streamlines.

3. Experimental observations
Experiments were run over a range of barotropic flow conditions with the unaltered

channel geometry and although there were slight differences in the scale and growth
rate of instabilities in each case, the general mechanism proved to be quite robust,
showing little qualitative change.

In all of the experiments, shear layer Reynolds numbers were such that the interface
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Figure 6. One second time lapse of flow at onset of instability.
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Figure 7. Experimental velocity profiles just prior to onset of instability. Vertical coordinate is refer-
enced to density interface (yρ) and is non-dimensionalized by the momentum thickness, δθ . Velocity
is measured relative to the velocity of the low-momentum stream (u1) and non-dimensionalized by
the total shear, ∆U.

remained stable in the upstream subcritical region. The region in the vicinity of the
tip of the wedge was marked by a three-dimensional cross-stream structure, primarily
due to boundary layer and surface tension effects; however, the interface profile
quickly became uniform across the channel as the interface deepened and as the flow
transitioned to supercritical conditions.

Interfacial instabilities began between 20 and 40 cm from the tip of the wedge as
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Figure 8. Image (left-hand column) and vorticity (right-hand column) sequence at onset of instability
for intermediate acceleration case. Each frame is a 0.1 s average at intervals of 0.5 s. Physical
dimensions of the images are approximately 10 cm × 7.5 cm. Vorticity scale is shown with the
colourbar with units of 1/s.

Figure 9. Image (left-hand column) and vorticity (right-hand column) sequence from intermediate
acceleration case showing initial separation and pinching off of core region. Each frame is a 0.1 s
average at intervals of 0.5 s.
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Figure 10. Image (left-hand column) and vorticity (right-hand column) sequence showing pinching
off of core and modified pairing mechanism. Each frame is a 0.1 s average at intervals of 0.5 s.

oscillations of the interface, rapidly growing downstream. The location and frequency
of the initial instabilities remained quite constant with only a slow oscillation of about
10 to 15 cm in the generation position occurring over the course of an experiment.

The initial stages of finite-amplitude growth exhibit significant asymmetry, with a
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bias of the vortex centre into the stagnant upper layer. Figure 6 shows an average
of images over 1 s at the location of the initial instability from the intermediate
acceleration case, revealing the centre of rotation of the instability displaced above
the interface. Flow is from left to right with the stagnant layer on the top. Average
velocity profiles obtained from DPIV analysis just upstream of the location of initial
instability, presented in figure 7, show no significant offset between the centres of the
density and the velocity profiles. The density interface at this location is essentially a
step centred at zero.

Figures 8, 9 and 10 present image sequences† of the finite-amplitude development
of the shear instability along with vorticity fields for each image. The sequences
represent successive stages of spatial development of the mixed layer. Each sequence
was obtained at different times, but due to the regular interval and repeatability of
the instabilities, we can utilize them to construct a spatial picture of the development
of a single vortex. The frame interval for each sequence is 0.5 s with the vorticity
fields each representing a 0.1 s average.

The early frames in figure 8 show fluid from the fast moving stream being drawn
rapidly into the vortex core and wound up in the shape of the familiar finite-amplitude
Kelvin–Helmholtz billows. An asymmetry in the developing core is apparent in
frame (e). The bias of the centre of the vortex core, indicated by the arrow in
frame (f), can already be clearly discerned in the ensuing image and vorticity frames.

At this stage the development deviates from that of the traditional non-accelerating
shear layer. Figures 9 and 10 illustrate the subsequent altered phase of the finite-
amplitude growth. In figure 9, the entire vortex structure elongates in the direction of
the flow, primarily drawing fluid from the stagnant upper region into the billow. The
core begins to lag behind the braid as the acceleration continues. The term ‘braid’, here,
refers to the narrow region of density gradient near the stagnation point occurring
between successive vortices (Corcos & Sherman 1976). The vortex core has become
further separated from the rest of the instability in figure 10 and a new core region is
observed to develop (identified by the arrows in figure 9e and figure 10c–e) while the
old core eventually pinches off and is left behind. In its place, a secondary core begins
to form. The original core continues to convect slowly downstream and interacts with
the following upstream structure. A strong subharmonic component is observed, with
alternate rollups being displaced towards the faster moving stream (figure 10h–j), while
still exhibiting the separation and pinching off mechanism followed by the formation
of a secondary core. The individual coherent vortices are identified in figure 10(j)
with the original core labelled as structure # 1, the following core is structure # 2 and
the secondary core is structure # 2a. The interaction further downstream between the
original core of the first structure in the subharmonic pair and the second structure
is a modified form of pairing event, with the original core amalgamating with both
the following pinched off core and its secondary core.

A variation of this pairing is also observed involving a shredding interaction where
a portion of the old core is torn off and amalgamates with the second structure
and the remaining portion of the original core survives in the low-momentum side
until it interacts with a third vortex. We call this type of interaction a ‘leapfrog’
pairing. An image sequence of a typical pairing interaction is shown in figure 11. The
sequence was obtained from a separate experiment with the nominal geometry and

† Complete video sequences of the images and corresponding vorticity fields presented in this
paper, along with additional examples are available on CD-ROM in standard formats. Interested
readers should contact the authors or the Journal of Fluid Mechanics Editorial Office.
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Figure 11. Image sequence of typical vortex pairing interaction. Flow parameters correspond to
those of the intermediate acceleration. Imaged area is approximately 15 cm× 11 cm. Frame interval
is 1.5 s.

flow parameters but with a larger image field visualized. The initial separating core,
identified as vortex #1 in the sequence, can be followed through the sequence as it
‘leapfrogs’ the next vortex in the subharmonic pair (#2) along with its secondary core
(#2a). Only a portion of vortex #1 appears to tear off in frame (f) and amalgamate
with vortex #2 and #2a, but a significant part remains in frames (h–j) even after the
third vortex (#3) has passed below.

Further downstream, in the more fully developed region of the mixing layer, there
is evidence of the persistence of the vortex mechanism illustrated in figures 8–10. An
image and vorticity sequence from this region is shown in figure 12. The imaged area
covers approximately two-thirds of the average shear layer thickness (as determined
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Figure 12. Image (left-hand column) and vorticity (right-hand column) sequence from fully de-
veloped region of intermediate acceleration case showing evidence of separation and pinching
mechanism.

from fluorescence density measurements) and is roughly aligned with the centre of
the density profile. In the initial frames, there is little visible evidence of mixing in
the upper portion of the image; however, the corresponding vorticity fields reveal
significant areas of vorticity. A vortex structure can be observed entering from the
left of the image. As this structure convects through, it leaves a trail of vorticity
behind which extends upward ending in a core of concentrated vorticity visible in
frame (d). Note that the vorticity associated with the initial structure is relatively weak
in comparison to that in the trailing core. The bulk of available vorticity has been
removed in the separated core, leaving only the newly generated vorticity near the
high-momentum stream. This process will be further addressed in § 5. The separated
core survives in the imaged region well after the leading structure has left the field
of view. A second trailing structure is visible entering in frame (k). This amalgamates
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Figure 13. Free-stream velocity vs. downstream position (referenced relative to the narrowest
section) for TA = 0.0012 (· · · · · ·4), TA = 0.003 (− − − − �) and TA = 0.0046 (——©). Lines
indicate predictions from hydraulic theory and individual points represent average experimental
measurements using PIV. Velocity are accurate to within ±0.1 cm s−1 for the low and intermediate
acceleration case and ±0.2 for the high acceleration case.

with much of the first separated core, although a smaller remnant of the original is
still visible in the final frame.

3.1. Alternative channel geometries

The effect of various rates of acceleration on the vortex mechanisms was examined
through the use of the alternative channel geometries discussed in § 2. The geome-
tries, density steps, g′, and barotropic flow rates, U0, were chosen using hydraulic
theory predictions for velocities (Pawlak & Armi 1997) with the goal of maintaining
the magnitude of velocities at the region of instability development at comparable
values for each case. Theoretical velocity predictions for each experiment along with
experimentally measured values using PIV are summarized in figure 13. Free-stream
velocities fluctuated as much as 8% for the intermediate and low acceleration cases
and 12% for the high acceleration case, due to the passing of vortices in the mixed
layer. Averaging over a minute of data (10 to 20 occurrences) allowed estimates of
average velocity to within 2− 4%. Velocities upstream are comparable for the three
cases, with variations occurring in the downstream (unstable) portion.

The value of the acceleration parameter, TA, as defined by equation (1.3), was
evaluated for each of the three geometries at the location of initial instability. We
have chosen the momentum thickness, δθ , defined as

δθ =
1

u2 − u1

∫ ∞
−∞

(u2 − u(y)) (u(y)− u1) dy (3.1)

as the representative vertical length scale, where u1 and u2 are the low- and high-
momentum stream velocities, respectively. While we will use these values of TA
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h0 g′ xi yi ui δθi
TA (cm) (cm s−2) U0 (cm) (cm) (cm s−1) F2

i (cm)

0.0012 20.0 1.3 0.56 10 14.2 4.4 1.05 0.17
0.0030 20.0 1.3 0.55 10 12.0 4.7 1.42 0.26
0.0046 12.5 1.8 0.55 20 5.3 5.5 3.17 0.28

Table 1. Experimental parameters: TA, non-dimensional acceleration parameter; h0, total channel
depth at narrowest section; g′, reduced gravity; U0, non-dimensional barotropic flow rate; xi,
streamwise location of onset of instability; yi, interface depth at x = xi; ui, layer velocity at x = xi;
F2
i , Froude number at x = xi; δθi , momentum thickness at x = xi.

to identify each of the cases considered, it should be apparent that TA is a local
parameter and an integral value would be more appropriate, for example, when
considering mean profiles of momentum and density, as we shall discuss in § 5. Values
for the relevant quantities at the onset of instability along with flow parameters at
the narrowest section (which serve to determine the background hydraulic flow) are
listed in table 1. The position of onset of instability, xi, is an approximate value based
on observations over the course of each experiment. The non-dimensional barotropic
flow rate is given as U0 = qf/b0h0(g

′h0)
1/2, where the subscript 0 indicates values

at the narrowest section of the channel and qf is the net volume flow through the
channel. The Froude number, F2 = u2/g′y is a measure of the criticality of the flow
relative to long internal waves.

For the high acceleration geometry (TA = 0.0046), which included a variation in
depth (figure 4b), a slightly higher density step of g′ = 1.8 was necessary to maintain
velocities consistent with the unaltered case. Since velocities scale with (g′h0)

1/2, the
higher value of g′ offset the reduction in depth at the narrowest section. Instabilities
again exhibited a very regular generation location and frequency. Figure 14, left-hand
column, shows an image sequence for TA = 0.0046 in the region of finite-amplitude
development. The frames show a very similar mechanism to that observed in the unal-
tered case, with more distinct features apparent. The developing vortex core detaches
from the interface and a new vortex core begins to develop. The secondary core (refer
to frames c and f in figure 14 on the left) shows increased development relative to
the same stage for TA = 0.003 (frames c and i in figure 14 on the right). In addition,
the interaction between the original core from the first structure in the subharmonic
pair and the secondary core from the second occurs at a position further upstream.

The low acceleration case (TA = 0.0012), resulting from a less rapid expansion in
width downstream of the narrowest section with no variation in depth (figure 4c),
required a density step of g′ = 1.3 to obtain the necessary velocities. The laser sheet
was angled slightly in the cross-stream plane to minimize out of plane motion resulting
from the channel asymmetry. Initial development of the instabilities was consistent
with the higher TA cases, with similar vortex separation occurring. The interface angle
and subsequent vortex separation was less than that observed in the other two cases.

Time-averaged density profiles were obtained for each experiment at various down-
stream locations using the methods described in § 2. Figure 15 shows vertical density
profiles at equivalent downstream locations for each experiment, corresponding to
points just downstream of the initial pairing or vortex separation location. The pro-
files show increasing asymmetry with higher accelerations. Profiles for TA = 0.003 and
TA = 0.0012 (figures 15a and 15b) are characterized by a sharp step near the high-
momentum stream with a long low-gradient tail extending into the low-momentum
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Figure 14. Image and vorticity sequences for high acceleration case (TA = 0.0046) (left-hand
columns), intermediate case (TA = 0.003) (right-hand columns).
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channel bottom. (a) TA = 0.0012. (b) TA = 0.003. (c) TA = 0.0046.

region. The lower acceleration case (figure 15c) results in a more symmetric profile.
Differences in these profiles will be discussed in more detail in § 5.

4. Spatial linear stability analysis
In order to investigate the instability modes possible and to gain some insight

into the initial stages of the mechanism observed, a spatial linear stability analysis
is presented here. With this purpose in mind, we will consider a parallel flow, under
the assumption that the acceleration does not significantly affect the nature of the
possible modes. Experimental observations will be used to validate this assumption.
The effects of acceleration, along with the assumption of inviscid flow make absolute
quantitative comparisons with experimental results difficult; however, the analysis
remains an instructive and necessary part of the phenomenological description we are
constructing.

The stability of infinitesimal perturbations in an inviscid, incompressible, stratified,
parallel shear flow is governed by the Taylor–Goldstein equation. For Boussinesq
flow, this is given by

∂2v

∂y2
+

(
N(y)2

(U(y)− c)2
− ∂2U/∂y2

U(y)− c − k
2

)
v(y) = 0, (4.1)
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Figure 16. Generalized velocity and density profiles.

where U(y) is the vertical profile of the x velocity, v(y) is the complex modulus of the
vertical perturbation velocity, N(y) is the buoyancy frequency, k is the wavenumber
and c = σ/k is the complex phase speed, with σ being the frequency. We choose
our vertical length scale as the shear layer momentum thickness, δθ , and the velocity
scale as one half of the shear, ∆U = U2 − U1. Following Hazel (1972) we use
ŷ = y/2δθ as the vertical coordinate with the dimensionless wavenumber, α = 2kδθ ,
the dimensionless frequency, β = 2σδθ/∆U and define the density profile by

ρ = ρ0 exp

(
−∆ρ

ρ0

S(ŷ)

)
(4.2)

with

S = tanh (R(ŷ − ηρ))
where ∆ρ = (ρ2 − ρ1) is the overall density step, ρ0 = 1

2
(ρ1 + ρ2) and ηρ is the offset

of the density interface from the velocity interface (see figure 16). We allow for a
variation in the ratio of velocity to density scales through the ratio R = δθ/δρ. The
velocity profile is given by

û =
2U(y)

∆U
=

2U1

∆U
+ (1 + tanh (ŷ)) . (4.3)

Dropping hats on the dimensionless variables, the dimensionless Taylor–Goldstein
equation is then

v̈ +

(
JṠ

(u− β/α)2
− ü

(u− β/α) − α
2

)
v(y) = 0, (4.4)

where dots indicate derivatives in y and J = 8g′δθ/∆U2 is the bulk Richardson
number. J is also equivalent to the Richardson number at the origin for the case of
ηρ = 0.

We will consider the case of a shear flow with rigid boundaries located at y = y1

and y = y2 where the disturbance velocity must vanish. The necessary boundary
conditions are then given by

v = 0 at y = y1, y2. (4.5)

For a given velocity profile, u(y), density profile, S(y), bulk Richardson number, J , and
wavenumber, α, the solution of the linear stability problem is an eigenvalue for either
a complex frequency, β, or a complex wavenumber, α, for which the eigenfunction,
v(y) satisfies the prescribed boundary conditions at y = y1, y2. Choosing the frequency
as the eigenvalue is equivalent to considering a temporally growing disturbance, while
the choice of α as the eigenvalue considers the case of a spatially growing instability.
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Although the temporal problem has traditionally received greater attention, the spatial
problem is more directly relevant to spatially developing shear flows such as that in
the present study and as such, we will investigate the case of a complex wavenumber,
α = αr + iαi.

Equation (4.4) along with the necessary boundary conditions, (4.5), was solved
numerically for α using a finite difference approximation employing a two-dimensional
shooting method.

We shall examine solutions obtained using boundary conditions and parameter
values corresponding to those at the onset of instability for the unaltered flow case.
These are: ηρ = 0, U1 = −0.3 cm s−1, U2 = 4.5 cm s−1, δθ = 0.25 cm, y1 = 8.0 cm,
y2 = −12.0 cm. A more general analysis over the (J, α) plane along with a study of
the effects of an offset of the density interface (ηρ 6= 0) is given in § 4.2.

The appropriate value for the ratio of velocity to density scales, R, is primarily a
function of Schmidt number, Sc, for salt in water, such that

R ∼ Sc1/2 ' 16; (4.6)

however, the existence of a viscous layer upstream of the wedge tip would suggest a
higher value for R. We have chosen a value of R = 50 for the results presented here,
although further study reveals very little change in the solutions for R > 8.

4.1. Modes of instability

Two relevant solution types were obtained for the given conditions at each real
wavenumber, αr . The fastest growing mode, which we will call mode A, corresponded
to a wavenumber, α = 0.60 − 0.22i with a phase speed of c = 1.37 cm s−1. For
the same real wavenumber, a slower growing solution (αi = −0.09), mode B, was
found, with a higher phase speed of c = 2.87 cm s−1. These modes are analogous
to the positive and negative Holmboe instabilities which are found as solutions to
the temporal problem (Hazel 1972; Lawrence et al. 1991). Solution A corresponds
to the upstream propagating, or negative solution. The slower growing solution B
relates to the positive temporal solution, with its slower growth rate a result of
the higher phase speed. The fastest growing solution for mode B occurred at a
wavenumber of α = 0.81 − 0.09i. It should be noted that the growth rates and
phase speeds for the spatial problem are not equivalent to the linearly transformed
solutions from the temporal case. The distinction between the dispersive Holmboe
mode and the non-dispersive Kelvin–Helmholtz mode illustrates the difference in
the two approaches. There is no clearly defined criterion to distinguish between the
Holmboe mode and the Kelvin–Helmholtz mode in the spatial case. The analysis of
the spatially developing unstratified shear layer by Michalke (1965) found a single
dispersive mode, in contrast to the classic temporal solution which has one non-
dispersive Kelvin–Helmholtz mode. Our solution of (4.4), in fact, does not find any
non-dispersive modes over the (J, α)-plane. As such, we will call our solutions hybrids
of the Kelvin–Helmholtz and Holmboe modes.

Using the eigenfunctions, v(y), corresponding to the solutions of (4.4) for modes
A and B, and using the continuity relation, we can obtain a perturbation velocity
field u′(y) and v′(y) of arbitrary amplitude. With this we can draw streamlines for
the instability modes for a given instant in time. Streamline plots for modes A and
B are displayed in figure 17. With y = 0 representing the centre of the velocity and
density interfaces, and y < 0 being the high-momentum stream, the respective offsets
of either mode is evident. The faster growing mode A shows significant displacement
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Figure 17. Streamlines of instability modes: (a) Mode A, (b) Mode B.

of its centre of rotation into the low-momentum side, while mode B is characterized
by a less significant bias into the higher momentum stream.

4.2. Effect of density offset

The effect of a non-zero value of ηρ was considered for the temporal case by Lawrence
et al. (1991). We will examine the effect of the offset between the density and velocity
interfaces on the linear stability of the spatially developing shear flow by considering
eigenvalue solutions to (4.4). Density and velocity profiles are given by (4.2) and (4.3),
respectively, with coordinates defined as shown in figure 16. The ratio of scales was
chosen as R = 50, as discussed earlier. Disturbance velocities are required to vanish at
equivalent non-dimensional vertical locations of ŷ = ±20.0. Solutions were examined
for the case of ηρ = 0 over a significant portion of the (J, α)-plane. Two relevant solu-
tions were obtained and growth rates for these are shown in figure 18. The eigenvalue
identified in § 4.1 as solution A, is dominant for all values of Richardson number, J .
We will examine the effect of the offset by considering the (αi, αr)-plane at J = 0.10.

The variation of growth rates for each mode is summarized in figure 19. The
qualitative behaviour of the solutions is similar to that predicted for the temporal
case by Lawrence et al. (1991). The slower propagating solution A is characterized by
a bias into the slower stream as illustrated in the streamline plot in figure 17(a) along
with a higher spatial growth rate for ηρ = 0. An offset of the density interface into
the low-momentum stream results in a decrease in growth rate along with an increase
in the most unstable wavenumber, with an offset in the opposite direction having the
reverse effect. Mode B, represented by the streamline plot in figure 17(b), undergoes
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Figure 18. Spatial growth rates for modes A and B in the (J, α)-plane for R = 50, ηρ = 0. Mode A
is shown as solid black lines with mode B represented by the grey lines.

an increase in growth rate and a decrease in the fastest growing wavenumber for a
positive ηρ. Mode A remains the fastest growing solution for values of ηρ < 0.4.

Both the temporal and spatial analyses indicate that the addition of a moderate
density offset (|η′ρ| < 1.0) results in the strengthening of one of the two hybrid modes. A
negative offset (into the higher momentum stream) will result in an increase in growth
rate and a decrease in most unstable wavenumber for mode A with the opposite effect
on mode B. The slight negative offset apparent in figure 7 will have the effect of
further reinforcing the dominance of mode A in the intermediate acceleration case.

4.3. Effect of boundaries

The introduction of rigid horizontal boundaries on a temporally developing shear
layer was examined by Hazel (1972) for R = 1. The primary effect of the presence of
boundaries is the destabilizing of lower wavenumbers. The most unstable wavenum-
bers remain largely unaffected until the boundaries are within less than 2.5δθ of the
interface, after which all wavenumbers are gradually stabilized. The effect of bound-
aries will no doubt have a significant effect on the flow near the wedge tip for higher
Reynolds number flows, but we shall not consider these effects since for all experi-
mental cases discussed, the interface was quite deep at the point of initial instability.

5. Discussion
The flow visualization and DPIV results allow us to construct a cartoon of the

vortex mechanics involved in the accelerating shear layer, motivated by the similar
cartoon of the unaccelerated shear layer by Corcos (1988). The evolution of the
mechanism is summarized in figure 20.
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Figure 19. Variation of growth rates with ηρ for modes A (solid lines) and B (grey lines).

The linear stability analysis has accounted for the initial bias of the centre of
rotation of the instability into the low-momentum region. Comparison of the ex-
perimentally observed instability in figure 6 to the streamline plot for solution A in
figure 17 validates the predictions of the linear analysis. Solution A has been shown
to be the dominant mode over a range of conditions and we can then expect that
this bias will be a regular feature of spatially developing flows in which the density
interface is such that R � 1.

As the instability develops, it entrains fluid from the high-momentum side around
its centre. The offset of the core centre from the interface results in a greater amount
of low-momentum fluid being drawn into the developing core (figure 20b, c). The
hybrid instability develops into a familiar billow structure concentrating the existing
vorticity near its centre with new vorticity produced in the braid region continuing
to feed into the core from either stagnation point. At this stage the effect of the
acceleration becomes important. While the core continues to convect downstream
at near its initial velocity, the high-momentum side of the structure is accelerated
downstream. This elongates the structure in the streamwise direction, resulting in the
separation of the developing core from its vorticity source in the downstream braid.
This is visible in figure 20(d).

An additional buoyancy effect also plays an important role. The vortex core, as a
coherent structure, is less dense than the fluid below it and, therefore, descends at a
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slower rate than the accelerating dense layer, resulting in a more horizontal trajectory.
This process accentuates the separation of the core region from the interface. The
subsequent vertical displacement leads to an increase in the separation of the core
from the vorticity source as is illustrated by the path lines in figure 20 and is evidenced
in frame (d). Low-momentum, lighter fluid is drawn into the structure and as the
acceleration continues, the core moves away from the interface until it completely
pinches off, carrying with it a large portion of the available vorticity. The interface,
still inclined, continues to produce new vorticity.

A time-averaged greyscale image of vorticity is presented in figure 21, corresponding
to the point of vortex separation seen in figure 20(d). The image, obtained by averaging
over 52 s (about 18 events), illustrates the horizontal track of the vorticity-containing
cores. The weaker track below correlates with the primary interface, plunging at a
steeper angle. The velocity field induced by the separating core continues to drive new
vorticity along the interface towards the root of its trailing braid, where the secondary
core seen in figure 20(d) begins to develop. The new core is a weak centre of vorticity
since the bulk of the existing vorticity has been removed in the separated core.

The subharmonic component, which results in vortex pairing in the standard shear
layer, remains significant but the pairing process is altered. The separation of the
first vortex in the subharmonic pair is accentuated by the subharmonic motion while
the detachment of the second vortex is hindered. The subharmonic interaction is
then between three vorticity structures: the two separated cores and the weaker
secondary core of the second structure. Vortices occasionally exhibit a variation in
the subharmonic interaction in which a highly separated vortex cannot completely
pair with the following structure. A portion of vorticity-containing fluid from the first
core is then torn away and remains in the low-momentum stream to interact with the
following subharmonic pair.
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Figure 22. Asymmetry factor, Γ , vs. acceleration parameter, TA.
Error bars indicate confidence in measurement.

The argument for the persistence of the mechanisms described by the cartoon
in figure 20 into more fully developed regions depends on the continuation of the
acceleration as well as on the existence of a region of high density gradient where
vorticity can continue to be locally produced. The averaged density profiles in figure 15
show evidence of such a region near the high-momentum stream. The existence of
this region can be expected considering our cartoon of the vortex mechanics. The
tearing off of vortex cores acts to remove the structure responsible for local stirring
(the core) from the immediate vicinity of the interface. The shed cores then transport
vorticity and fluid to be mixed away from the interface at which a local maximum in
the gradient can persist.

A quantitative measure of the differences in the density profiles shown in figure 15
can be expressed in terms of an asymmetry factor, which we will define as

Γ =
1

θρ∆ρ

∫ y0

0

(ρ(y)− ρ1)d(y − y50) +
1

θρ∆ρ

∫ 0

−y0

(ρ2 − ρ(y))d(y − y50), (5.1)

where y50 is the location at which the time-averaged density is equal to the average of
the two streams, and θρ is the integral density thickness. The asymmetry factor, Γ , is
simply the integral of the deviation of the profile from a step centred at y50. A positive
value for Γ indicates a bias of the density profile into the low-momentum stream
and vice versa. Values of Γ for the profiles in figure 15 are plotted in figure 22 as a
function of TA. The points were chosen from data at roughly equivalent streamwise
locations referenced from the point of initial instability, i.e. considering the point
of initial instability given in table 1, x = 32.0 for TA = 0.0012 is comparable to
x = 32.0 for TA = 0.003 and x = 40.0 for TA = 0.0046. The data show that there is
an increase in the bias of the mixing into the lower velocity stream with an increase
in the acceleration parameter, TA.

A second measure of the strength of the mechanism is shown in figure 23. The plot
indicates the relative mean concentration of the fluid within the mixed layer, defining
the mixed layer boundaries by the 15% and 85% concentration interfaces, y15 and
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Figure 23. Mean concentration, C̄ , within mixed layer vs. acceleration parameter, TA. The mixed
layer is defined by the 15% and 85% concentration interfaces. Error bars indicate confidence in
measurement.

y85, such that

C̄ =
1

δ15−85

∫ y=y15

y=y85

ρ(y)− ρ1

∆ρ
dy (5.2)

with δ15−85 = y15 − y85, for the profiles shown in figure 15. The decrease in C̄ with
increasing TA reflects the selective entrainment of fluid from the low-momentum
stream as the acceleration increases and the resulting separation of the vortex cores
from the interface becomes more pronounced. This is well illustrated in the sequences
in figures 9 and 10, in which the large region of low-momentum fluid entrained
beneath the separating core is evident.

As we have mentioned in § 3.1, it is the integral of TA that is responsible for
determining the characteristics of the momentum and density profiles. We have
used a representative value for TA, due to limitations in available measurements, to
illustrate the effect of its variation on mixed layer development.

The scale over which changes in velocity are relevant to the vortex phenomena
discussed is given by the scale over which instabilities develop. This dynamical
description of the mechanism agrees with our choice of TA (see § 1.4) as the relevant
parameter. For flows which accelerate gradually over a distance much larger than the
scale of instabilities (TA → 0), the traditional description of a stratified shear layer
will apply. For rapidly accelerating flows in which velocity changes are large relative
to the wavelength of instabilities (TA ↑),the analysis of accelerated shear layers will
be relevant.

The observed vortex mechanism has been described as a result of the combined
effects of spatial acceleration and buoyancy. It may seem paradoxical then that
buoyancy does not appear explicitly in the acceleration parameter. It is implicit,
however, in the acceleration term. The effect of buoyancy on the dynamics of the
mixing layer is related to the angle of the interface, that is, the separation of the
vortices from the interface is proportional to the non-orthogonality of the buoyancy
and the velocity vectors. The local acceleration of the flow, in turn, is determined
primarily by the baroclinic generation of vorticity along the inclined interface for
flows in which F2 ∼ O(1). The buoyancy effects and the acceleration are then both
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determined through the inclination of the interface. In the Appendix we discuss
the relative importance baroclinic generation of vorticity versus production due to
cross-stream stretching. The baroclinic production is found to dominate for weakly
supercritical flows.

For the lower acceleration case (TA = 0.0012), then, buoyancy is less effective
in separating the vortex vertically from the interface as a result of the reduction
in interface angle. Furthermore, over the time scale of the instability growth, the
acceleration is not significant enough to generate the rapid horizontal separation of
the core from its downstream braid that is observed for TA = 0.003 and TA = 0.0046.

At higher values of the acceleration parameter, the acceleration rapidly produces
a horizontal separation in the structure and the secondary core becomes more highly
developed. In addition, the acceleration maintains a low Richardson number elimi-
nating much of the baroclinic production of opposite-sign vorticity which eventually
stops the growth of the mixed layer for unaccelerated flows.

In a simplified manner, we can cartoon the development by considering the upper
limit of the interface to extend nearly horizontally from the initial point of instability,
and the lower limit bounded by the prediction of the interface location from hydraulic
theory. The effect of the vortex mechanism observed then is an increase in the vertical
extent of the density layer as the interface angle increases.

6. Summary and conclusions
An experimental and analytical study of a stratified shear layer subjected to a spatial

acceleration has revealed the existence of a new finite-amplitude vortex mechanism.
Flow visualization and particle imaging velocimetry have been used to identify the
primary factors in the mechanics to be the spatial acceleration combined with the
effects of buoyancy. The net result of these factors is the separation and pinching off
of the developing vortex core from the vorticity source at the interface. In addition to
PIV measurements and flow visualizations, laser induced fluorescence (LIF) was used
to measure average density fields downstream of the altered vortex pairing region
and a significant asymmetry is observed in the structure of the mixing layer, in which
a low-gradient region extends into the lower momentum stream. It is proposed that
the observed vortex mechanics serve as an instrument for the transfer of vorticity and
mass into the slower stream away from the interface and the source of baroclinic
production.

These experiments have served to further illustrate the discrepancies between spatial
and temporal flow. Examination of flow visualization from Thorpe’s temporally
accelerating tilting tube experiments (Thorpe 1971, 1973) shows no evidence of the
mechanism documented herein. This is expected, however, with the cartoon we have
presented in § 5. In the temporally accelerating case, the effect of buoyancy is opposite
to that in the spatial case. If we consider one of two equally unstable, offset temporal
modes to develop, the effect of a variation in density within the developing structure is
to force the offset vortex towards the interface and prevent its separation. In addition,
since both layers are accelerating, the convective speed of the instability will accelerate
as well, eliminating the mechanism for the horizontal separation of the core from its
braids.

We can consider, now, the effect of introducing an expansion in area on a traditional
stratified splitter plate experiment such as that detailed in Koop & Browand (1979).
From hydraulic theory we know that this will result in a thinning of the faster
moving stream (if the flow is supercritical). For geometries involving only a variation
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in depth, or for variation in width and weak supercritical flow, vorticity generation
will be primarily baroclinic and the mechanics we have observed can be expected to
play an important role. For strong supercritical flow, cross-stream vortex stretching
dominates the production of vorticity. As F2 increases then, we can expect intervortex
interactions to play a more significant role since the vorticity within the developing
core intensifies without relying on the baroclinic production at the interface.

In this laboratory experiment the velocity profile is established via surface tension
and viscous diffusion. In a stratified geophysical flow, the velocity profile would more
likely be a function of the density profile and continuously stratified hydraulics.
Nonetheless, many geophysical scenarios can be approximated by two homogeneous
layers and this cartoon of the accelerating stratified shear layer will apply. Further-
more, the description is representative of low Richardson number mixing over a large
range of barotropic flow for moderate Froude numbers.

This type of mechanism can be expected to be important in other flows in which
a spatial acceleration is combined with a transverse component of buoyancy. Besides
hydraulically controlled atmospheric and oceanic flows, these features are present in
buoyant jets and plumes, particularly those in which the axis is at an angle from the
vertical.

Our study of the inclined mixing layer has revealed markedly different vortex
dynamics along with significantly modified density structure. These results call into
question the applicability of generic ideas of shear-induced mixing to specific mixing
problems. In more complex geophysical scenarios involving varied geometries and
stratified environments further differences can be expected.

The work presented here is the result of the first author’s PhD thesis (Pawlak 1997).
Funding was provided by the National Science Foundation and the Office of Naval
Research. We would like to thank Professors Juan Lasheras and Ken Melville for
making their experimental equipment available to us. We would also like to acknowl-
edge the technical assistance of Dr Jochen Klinke in collecting and processing many
of the image sequences. We are grateful to Professor Lasheras and Professor David
Farmer for many insightful discussions and comments during the course of our study.

Appendix. Baroclinic vorticity production
For the two-layer wedge flow through a contraction, vorticity is produced by two

mechanisms: vortex stretching, resulting from the variation in width of the channel,
and baroclinic generation, as a consequence of the inclination of the interface. The
relative contributions of each can be estimated by dimensional analysis of the vorticity
equation.

Dω

Dt
= ω · ∇v + ν∇2ω +

∇ρ× ∇p
ρ2

. (A 1)

The z-component of the stretching term is given by

(ω · ∇v)z = ωz

(
∂u

∂z
+
∂v

∂z
+
∂w

∂z

)
. (A 2)

If we assume there is no cross-stream variation in u and v, this reduces to

(ω · ∇v)z = ωz
∂w

∂z
. (A 3)
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Figure 24. Geometry of density gradient vector.

The boundary conditions on the transverse velocity, w, are

w = ±u
2

db

dx
, z = ±b/2,

w = 0, z = 0

 (A 4)

from the tangential velocity condition at the wall for a symmetric channel. The
channel width is given by b. Assuming further, that the gradients of u and v do not
vary with z, the continuity equation requires that

w = C(x, y)z. (A 5)

C is then determined from the boundary conditions, (A 4), such that

∂w

∂z
=
u

b

db

dx
. (A 6)

From the definition of the z-component of the vorticity,

ωz =
∂u

∂y
∼ ∆u

δv
=

u

δv
, (A 7)

where δv is a shear layer vorticity thickness, and the velocity step, ∆u, has been
replaced by u, since we have one stagnant layer. The contribution of −∂v/∂x has
been neglected, which is appropriate if the interface slope, dy/dx, is not large. Using
equations (A 6) and (A 7), the production of z-vorticity by vortex stretching can then
be scaled as

(ω · ∇v)z ' 2u2

δvb

db

dx
. (A 8)

The baroclinic generation of z-vorticity is given by(∇ρ× ∇p
ρ2

)
z

=
1

ρ2

(
∂ρ

∂x

∂p

∂y
− ∂ρ

∂y

∂p

∂x

)
. (A 9)

We assume now, that the horizontal pressure gradient is negligible and use the
Boussinesq approximation of small variation in density to obtain(∇ρ× ∇p

ρ2

)
z

=
g

ρ̄

∂ρ

∂x
. (A 10)

From the flow geometry (figure 24), we can deduce

∂ρ

∂x
=
∂ρ

∂n

∆y

∆s
=
∂ρ

∂n
sin θ. (A 11)
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The density gradient can be scaled as

∂ρ

∂n
∼ ∆ρ

δρ
, (A 12)

where δρ is a measure of the density interface thickness. Using equations (A 11)
and (A 12), in equation (A 10) and assuming that the angle, θ, is small so that
sin θ ' θ ' dy/dx, we find (∇ρ× ∇p

ρ2

)
z

=
g′

δρ

dy

dx
. (A 13)

If we now assume that the vorticity and density gradients are constant across the
interfaces then integrating equations (A 8) and (A 13) to obtain the total vorticity
produced at a given x-location, amounts to multiplying by δv and δρ, respectively.

We define the ratio of baroclinic production to vortex stretching production as

Bω =

∣∣∣∣δρ(∇ρ× ∇pρ2

)
z

∣∣∣∣
|δv (ω · ∇v)z| . (A 14)

Substituting equations (A 8) and (A 13) into equation (A 14) and rearranging, we find

Bω =

∣∣∣∣[g′yu2

] [
(1/y)(dy/dx)

(1/b)(db/dx)

]∣∣∣∣ . (A 15)

We recognize the first term in (A 15) as the single layer Froude number, F2 = u2/g′y,
where y is the layer depth.

Using two-layer hydraulic theory for the case of strong barotropic flow (see Pawlak
& Armi 1997), generalizing to allow for variation of depth and width, we find

1

y

dy

dx
=

[
F2

b

db

dx
− 1

y

dh

dx

]
(A 16)

where h is the total channel depth. Substituting into equation (A 15),

Bω =

∣∣∣∣ 1

1− F2

[
1− b

yF2

dh/dx

db/dx

]∣∣∣∣ . (A 17)

For channel geometries involving no variation in width, there will clearly be no
stretching component and we will have Bω = ∞ with vorticity production being
purely baroclinic. For geometries with no variation in depth, equation (A 17) reduces
to

Bω =

∣∣∣∣ 1

1− F2

∣∣∣∣ . (A 18)

Thus for subcritical and weakly supercritical flow (F2 < 2) vorticity production will
be primarily due to baroclinicity. For a general channel geometry, involving changes
in depth and width, the bracketed term in equation (A 17) will play a more significant
role, particularly for shallow flows (y � b); however, it is clear that for highly
supercritical flows, vorticity generation will be dominated by vortex stretching.
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